Displaying 10 of 145 results for "Shu-Heng Chen" clear search
My profound interest in networks convinced me to work in these subjects and start my master project on an application of social network analysis for detecting organized fraud in Automobile insurance, which helps to flag groups of fraudsters. The key point of this project is simply to find fraudulent rings, while the most of traditional methods have only taken opportunistic fraud into consideration. My duty in research is to design an algorithm for identifying cyclic components, then to be compared with theoretical ones. This project showed me how networks are used in the analysis of relations.
Social scientist based in Milan, Italy. Post-doctoral researcher in Sociology at the Department of Social and Political Sciences of the University of Milan (Italy), member of the Behave Lab. Adjunct professor of Social Network Analysis at the Graduate School in Social and Political Sciences of the University of Milan.
I graduated Bachelor and Master studies at the University of Warsaw, obtaining the diploma in biology at College of Inter-Faculty Individual Studies in Mathematics and Natural Sciences (MISMaP). After graduation I worked as a freelancer in data science and statistics, then worked for 2 years as a data scientist in an IT startup and now I am working as a statistician in The Polish National Information Processing Institute (OPI PIB) in a group analysing condition of science and higher education in Poland. My interests: agent based modelling, evolutionary ecology, statistics, data science, sociology of science.
Corinna is a lecturer in the Department of Sociology. She joined the Centre for Research in Social Simulation at the in August 2008 as a Research Fellow. Her academic background is in Philosophy (LSE, BSc MSc) and Computer Science (KCL,PhD), where her PhD Instinct for Detection developed a logic for abductive reasoning.
Currently Corinna is the PI on an AHRC Research Grant on collective reasoning in agent-based modelling, titled Collective Reasoning as a Moral Point of View. Her research interests are decision mechanisms, in particular collective decision-making, context dependency of decisions and methodological and epistemological aspects of agent-based modelling and social simulation. She has applied collective decision making to the analysis to the weakening of the Mafia in Southern Italy within the GLODERS project and published a book Modelling Norms, co-authored with Nigel Gilbert, providing a systematic analysis of the contribution of agent-based modelling to the study of social norms and deviant behaviour. Recently Corinna has been developing a teaching stream within CRESS with a periodically running short course Agent-based Modelling for the Social Scientist and the MSc Social Science and Complexity.
B.S. in Fish and Wildlife from Michigan State University in 1996. M.S. in Wildlife Ecology from the University of Maine - Orono in 2001. Employed by the Michigan Department of Natural Resources since 2003, first as a field biologist (2003-2008), then statewide endangered species coordinator (2008-2012), and currently as the statewide (climate) adaptation program lead (2012-present). Also currently a graduate student in the Boone and Crockett Quantitative Wildlife Center at Michigan State University (2015-present). Father, gardener, hiker, and amateur myxomycologist.
Human-wildlife social-ecological systems, resilience and learning in complex adaptive systems, climate change, disturbance ecology, and historical ecology
Social network analysis has an especially long tradition in the social science. In recent years, a dramatically increased visibility of SNA, however, is owed to statistical physicists. Among many, Barabasi-Albert model (BA model) has attracted particular attention because of its mathematical properties (i.e., obeying power-law distribution) and its appearance in a diverse range of social phenomena. BA model assumes that nodes with more links (i.e., “popular nodes”) are more likely to be connected when new nodes entered a system. However, significant deviations from BA model have been reported in many social networks. Although numerous variants of BA model are developed, they still share the key assumption that nodes with more links were more likely to be connected. I think this line of research is problematic since it assumes all nodes possess the same preference and overlooks the potential impacts of agent heterogeneity on network formation. When joining a real social network, people are not only driven by instrumental calculation of connecting with the popular, but also motivated by intrinsic affection of joining the like. The impact of this mixed preferential attachment is particularly consequential on formation of social networks. I propose an integrative agent-based model of heterogeneous attachment encompassing both instrumental calculation and intrinsic similarity. Particularly, it emphasizes the way in which agent heterogeneity affects social network formation. This integrative approach can strongly advance our understanding about the formation of various networks.
Anna Pagani is an architect and doctoral researcher under the supervision of Prof. Claudia R. Binder in the interdisciplinary laboratory for Human-Environment Relations in Urban Systems (HERUS) at École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland. In her PhD, she works closely with tenants, housing providers and practitioners to provide housing that is not only environmentally but also socioculturally sustainable.
Her research interests revolve around the relationship between the human and material components of the built environment, and more specifically on the introduction of a systems perspective to housing studies.
I obtained my undergraduate degree in Mathematics at Worcester College, Oxford University. I then worked for 9 years for the UK government before returning to university to study for a MSc and PhD at UCL. On leaving UCL I started working in the insurance industry, where I develop models of cyber catastrophe events.
Key research interests are how to build models of complex human behaviour.
My PhD research project was focussed on building a model of the process by which people develop the propensity to commit acts of crime or terrorism, from which came a computer simulation of the radicalisation process.
My current research interest is on creating models of cyber threats.
If you are a student who is too tired to work on assignments but the fear of deadline is not letting you to do your work in a better way, then relax. You are not alone in this. There are so many other students like you who just don’t like the thought of working on assignments, some like doing so but they don’t have the right means. In such cases, it is better to rely on professional assignment helpers than losing good grades. You can find a genuine expert around you. It is easy to spot such professionals on the web and experience seamless services. Believe you will never regret the decision of hiring experts if you will come across a genuine helper.
Olá, I’m Daniel! 👋
I’m an R(esearcher) at the University of São Paulo (USP) working on complex systems and data science. My family name is actually KACHvartanian, but I go by Vartanian to save everyone from a linguistic workout.
I love building open-source tools, being part of active communities, and working with the R, Python, and NetLogo programming languages. When I’m not coding, I’m likely watching a good movie, seeing friends, wandering through new places, or tinkering with some obscure new thing that may or may not go anywhere.
Displaying 10 of 145 results for "Shu-Heng Chen" clear search