Displaying 10 of 259 results for "Oto Hudec" clear search
My broad research interests are in human-environmental interactions and land-use change. Specifically, I am interested in how people make land-use decisions, how those decisions modify the functioning of natural systems, and how those modifications feedback on human well-being, livelihoods, and subsequent land-use decisions. All of my research begins with a complex systems background with the aim of understanding the dynamics of human-environment interactions and their consequences for environmental and economic sustainability. Agent-based modeling is my primary tool of choice to understand human-environment interactions, but I also frequently use other land change modeling approaches (e.g., cellular automata, system dynamics, econometrics), spatial statistics, and GIS. I also have expertise in synthesis methods (e.g., meta-analysis) for bringing together leveraging disparate forms of social and environmental data to understand how specific cases (i.e., local) of land-use change contribute to and/or differ from broader-scale (i.e. regional or global) patterns of human-environment interactions and land change outcomes.
Our overriding approach has been to advance the state-of-the-art in conducting large-scale simulation studies, by developing and disseminating experimental designs that facilitate the exploration of complex simulation models
I have only just started becoming active in research/agent based modeling.
I find agent based computational economics interesting. I would also be interested in combining agent based modeling to explore cultural anthropology, government policies, socioeconomic stratification, and the diffusion of information.
I have a particular interest in the way in which social network structure influences dynamic processes operating over the netowrk, such as adoption of behaviour or spread of disease. More generally, I am interested in using complex systems methods to understand social phenomena.
Andrew Crooks is an Associate Professor with a joint appointment between the Computational Social Science Program within the Department of Computational and Data Sciences and the Department of Geography and GeoInformation Science, which are part of the College of Science at George Mason University. His areas of expertise specifically relate to integrating agent-based modeling (ABM) and geographic information systems (GIS) to explore human behavior. Moreover, his research focuses on exploring and understanding the natural and socio-economic environments specifically urban areas using GIS, spatial analysis, social network analysis (SNA), Web 2.0 technologies and ABM methodologies.
GIS, Agent-based modeling, social network analysis
I am a Senior Economist in the Capital Markets Division of the Bank of England. I have a PhD in Economics from the joint program at Vilfredo Pareto Doctorate in Economics (University of Turin) and Collegio Carlo Alberto, where I’ve taught graduate level economic courses. Prior to joining the Bank of England, I also worked in the private sector as a quantitative analyst on issues related to different areas including asset management, risk management, and policy implementation.
My interests lie in the areas of market structure, macroprudential and microprudential policies and their interactions, international macroeconomics, political economy, international financial integration, banking, and systemic risk.
Antônio Sousa is a biologist with a background in medical entomology, disease ecology, statistical and computational modeling. Antônio has a Ph.D. (2018) and Master (2014) in Science from the School of Public Health at the University of São Paulo, Brazil. Currently, he is a postdoctoral fellow in the same institution.
My research interest lies in the study of the transmission and dispersal dynamics of vector-borne diseases. I have been working on the development of statistical, mathematical and computational models to understand bioecology of mosquitoes and to predict the transmission dynamics of pathogens transmitted by these insects.
Leonardo Grando is a Ph.D. at the University of Campinas (UNICAMP) in Brazil. I am interested in complex systems, agent-based simulation, artificial intelligence, the Internet of Things, programming, and machine learning tools. I have expertise in Netlogo, Python, R, Latex, SQL, and Linux tools.
My Ph.D. work project is an IoT devices (UAVs) swarm agent-based modeling simulation (ABMS) aiming the perpetual flight. The workflow is Netlogo to ABMS simulate, Python and R to data analysis, and I use Latex for my thesis writing.
I am a scientist at the Johns Hopkins Applied Physics Laboratory. Previously, I worked for the Board of Governors of the Federal Reserve System as an internal consultant on statistical computing. I have also been a consultant to numerous government agencies, including the Securities and Exchange Commission, the Executive Office of the President, and the United States Department of Homeland Security. I am a passionate educator, teaching mathematics and statistics at the University of Maryland University College since 2010 and have taught public management at Central Michigan University, Penn State, and the University of Baltimore.
I am fortunate to play in everyone else’s backyard. My most recent published scholarship has modeled the population of Earth-orbiting satellites, analyzed the risks of flood insurance, predicted disruptive events, and sought to understand small business cybersecurity. I have written two books on my work and am currently co-editing two more.
In my spare time, I serve Howard County, Maryland, as a member of the Board of Appeals and the Watershed Stewards Academy Advisory Committee of the University of Maryland Extension. Prior volunteer experience includes providing economic advice to the Columbia Association, establishing an alumni association for the College Park Scholars Program at the University of Maryland, and serving on numerous public and private volunteer advisory boards.
I am investigating the use of machine learning techniques in non-stationary modeling environments to better reproduce aspects of human learning and decision-making in human-natural system simulations.
Displaying 10 of 259 results for "Oto Hudec" clear search