Community

Displaying 6 of 176 results for "Jonathan Marino" clear search

Eric Kameni Member since: Mon, Oct 19, 2015 at 06:01 PM Full Member

Ph.D. (Computer Science) - Modelisation and Application, Institute for Computing and Information Sciences (iCIS) and Institute for Science, Innovation and Society (ISIS), Faculty of Science, Radboud University, Netherland, Master’s degree with Thesis, University of Yaounde I

Eric Kameni holds a Ph.D. in Computer Science option modeling and application from the Radboud University of Nijmegen in the Netherlands, after a Bachelor’s Degree in Computer Science in Application Development and a Diploma in Master’s degree with Thesis in Computer Science on “modeling the diffusion of trust in social networks” at the University of Yaoundé I in Cameroon. My doctoral thesis focused on developing a model-based development approach for designing ICT-based solutions to solve environmental problems (Natural Model based Design in Context (NMDC)).

The particular focus of the research is the development of a spatial and Agent-Based Model to capture the motivations underlying the decision making of the various actors towards the investments in the quality of land and institutions, or other aspects of land use change. Inductive models (GIS and statistical based) can extrapolate existing land use patterns in time but cannot include actors decisions, learning and responses to new phenomena, e.g. new crops or soil conservation techniques. Therefore, more deductive (‘theory-driven’) approaches need to be used to complement the inductive (‘data-driven’) methods for a full grip on transition processes. Agent-Based Modeling is suitable for this work, in view of the number and types of actors (farmer, sedentary and transhumant herders, gender, ethnicity, wealth, local and supra-local) involved in land use and management. NetLogo framework could be use to facilitate modeling because it portray some desirable characteristics (agent based and spatially explicit). The model develop should provide social and anthropological insights in how farmers work and learn.

Christian Vincenot Member since: Fri, Nov 13, 2020 at 03:42 AM Full Member

Master in Computer Science, Louis Pasteur University, Strasbourg, France, Ph.D. in Social Informatics, Kyoto University, Japan

Prof. Christian E. Vincenot is by nature an interdisciplinary researcher with broad scientific interests. He majored in Computer Science / Embedded Systems (i.e. IoT) at the Université Louis Pasteur (Strasbourg, France) while working professionally in the field of Computer Networking and Security. He then switched the focus of his work towards Computational Modelling, writing his doctoral dissertation on Hybrid Modelling in Ecology, and was awarded a PhD in Social Informatics by Kyoto University in 2011 under a scholarship by the Japanese Ministry of Research. He subsequently started a parallel line of research in Conservation Biology (esp. human-bat conflicts) under a postdoctoral fellowship of the Japanese Society for the Promotion of Science (JSPS) (2012-2014). This led him to create the Island Bat Research Group (www.batresearch.net), which he is still coordinating to this date. In 2014, he was appointed as the tenured Assistant Professor of the Biosphere Informatics Laboratory at Kyoto University. He also been occupying editorial roles for the journals PLOS ONE, Frontiers in Environmental Science, and Biology. In 2020, he created Ariana Technologies (www.ariana-tech.com), a start-up operating in the field of Data Science/Simulation and IoT for crisis management.

Prof. Vincenot’s main research interests lie in the theoretical development of Hybrid Mechanistic Simulation approaches based on Individual/Agent-Based Modeling and System Dynamics, and in their applications to a broad range of systems, with particular focus on Ecology.

Klaus G. Troitzsch Member since: Wed, Dec 12, 2018 at 11:37 AM Full Member Reviewer

Dr. phil., Political Science, University of Hamburg

Klaus G. Troitzsch was a full professor of computer applications in the social sciences at the University of Koblenz-Landau since 1986 until he officially retired in 2012 (but continues his academic activities). He took his first degree as a political scientist. After eight years in active politics in Hamburg and after having taken his PhD, he returned to academia, first as a senior researcher in an election research project at the University of Koblenz-Landau, from 1986 as full professor of computer applications in the social sciences. His main interests in teaching and research are social science methodology and, especially, modelling and simulation in the social sciences.
Among his early research projects there is the MIMOSE project which developed a declarative functional simulation language and tool for micro and multilevel simulation between 1986 and 1992. Several EU funded projects were devoted to social simulation and policy modelling, the most recent from 2012 to 2015 combining data/text mining and agent-based simulation to analyse the global dynamics of extortion racket systems.
He authored, co-authored, and co-edited several books and many articles in social simulation, and he organised or co-organised a number of national and international conferences in this field. Over nearly three decades he advised and/or supervised more than 55 PhD theses, most of them in the field of social simulation. He offered annual summer and spring courses in social simulation between 1997 and 2009; more recent courses of this kind are now being organised by the European Social Simulation Assiciation and held at different places all over Europe (mostly with his contributions).

Computational social science, structuralist theory reconstruction

Francesc Bellaubi Member since: Thu, Jun 27, 2013 at 03:40 PM

PhD candidate

performance of urban water service provision, high levels of inequities and inefficiency persist. In terms of water distribution and cost, these undesirable patterns have a high impact on peri-urban areas usually populated by marginalized and poor populations. The high levels of Non-Revenue Water (NRW), together with the existence of corrupt practices and mismanagement of water utilities, remain a highly controversial issue.

This situation confronts rent-seeking theory directly, explaining the performance-corruption relationship (Repetto, 1986). The presumption is that low performance in water supply service provision results from corruption because rent-seeking occurs. Hence, the implementation of performance-oriented reforms in the water supply sector, such as regulation or private sector participation, will reduce corruption, increasing the efficiency of water service provision. Nevertheless, latest evidence shows that “key elements of good political governance have a positive effect on the access to water services in developing countries. In turn, private sector participation has little influence other than increasing internal efficiency of water providers” (Krausse, 2009).

Indeed the relation between governance, corruption and performance seems to be more complex than theory wants to acknowledge. It must be reviewed further than a simple cause-effect relationship. It appears that poor management of water utilities, evidenced by high levels of NRW, justifies new investments. Such practices can be encouraged by an “opportunistic management”, whilst at the same time maintaining an influential “hydrocratic elite” in the sphere of water control.

The present research proposal aims to understand the relation between mismanagement and corruption of water control practices in water supply service provision. The research examines how this relationship affects the performance of water service provision and relates to water supply governance models at municipal peri-urban level in three African countries.

To understand the mismanagement-corruption relationship, we look at different case studies of water supply service provision in Senegal, Ghana and Kenya. Each case represents a different governance model in terms of management practices, institutional and organizational settings, and the actors in place, which affects the performance of water service provision in terms of allocative efficiency and access to water (equity). Whether regulation, decentralization and private sector participation constitute possible ways to reduce corruption is examined in the context of water sector reform.

In a second step, we propose a theoretical model based on Agent Based Modelling (ABM) (Pahl-Wostl, 2007) to reproduce complex social networks under a Socio-Ecological System (SES) framework approach. The model will allow us to test whether collaborative governance in the form of collective action in a participatory and negotiated decision-making process for water control, can reduce corruption and increase performance.

The present research benefits from the project “Transparency and Integrity in Service Delivery in Sub-Saharan Africa”. This project, carried out by Transparency International (TI) in 8 Sub-Saharan countries, aims to increase access to education, health and water by improving transparency and integrity in basic service delivery. The proposal retains focus on Senegal, Ghana and Kenya in the water sector.

Key words: water control, mismanagement, corruption, performance, collaborative governance, modelling, collective action, negotiation, participation

Ping Lu Member since: Fri, Feb 24, 2017 at 04:47 AM Full Member Reviewer

Lu Ping is a dedicated researcher in interdisciplinary fields including artificial intelligence (AI), digital economy, technological innovation, and industrial economics. Currently serving as an Associate Research Fellow at the China Academy of Information and Communications Technology (CAICT), Lu Ping focuses on examining the impacts of digital technologies (e.g., AI, big data, and IoT) on economic growth, industrial ecosystems, policy formulation, and societal ethics through multidimensional data modeling and empirical research.
Representative Academic Contributions:
1. AI Development and Societal Implications
A Brief History of Artificial Intelligence Development in China (2017): Explored the technological evolution and policy-driven pathways of China’s AI industry.
Ethical Dilemmas Faced by AI Algorithms (2018): Analyzed ethical challenges such as algorithmic bias and data privacy, proposing governance frameworks.
A Brief History of the Evolution of Smart Hardware in China (2018): Systematically reviewed the technological iterations and market dynamics of China’s smart hardware sector.
2.Technological Innovation and Industrial Economics
An Empirical Analysis of Technological Innovation Driving Growth in Internet Companies: Evidence from A-Share Listed Internet Firms in Shanghai and Shenzhen (2019).
Research on Competitiveness Measurement of Frontier Emerging Industries Based on Data Envelopment Analysis (DEA) Models (2019).
3.Digital Economy and Market Behavior
Correlation Analysis of Crowdfunding Behavior and Funding Performance for Internet Products: A Bayesian Approach Based on JD.com Crowdfunding Data (2018): Uncovered nonlinear relationships between user participation and project success rates using crowdfunding platform data.
Analyzing the Effects of Developer and User Behavior on Mobile App Downloads (2019): Built predictive models for app market performance based on user behavior data.
4.Policy Simulation
General Equilibrium Analysis of Beijing’s Water Supply and Consumption Policies: A Computable General Equilibrium (CGE) Model-Based Approach (2015).
Impact Analysis of EU Food Safety Standards on China’s Food Industry: A Dynamic Global Trade Analysis Project (GTAP) Model-Based Study (2015).
Academic Contributions:
Pioneered interdisciplinary paradigms in industrial economics research by integrating perspectives from econometrics, data science, and sociology. Published high-impact research in AI ethics, digital economy policies, and resource-environmental economics, providing decision-making references for academia and policymakers.

My research focuses on the interdisciplinary nexus of artificial intelligence (AI), digital economy, technological innovation, and industrial economics, with an emphasis on understanding how digital technologies reshape economic structures, policy frameworks, and societal norms. Key areas of interest include:

  1. Artificial Intelligence & Digital Transformation
    Ethical and Governance Challenges of AI: Investigating algorithmic bias, data privacy, and accountability in AI systems; proposing frameworks for ethical AI development and deployment.
    AI Adoption and Economic Impact: Analyzing how AI-driven automation and innovation influence productivity, labor markets, and industrial competitiveness.
  2. Digital Economy & Platform Markets
    Crowdfunding, Sharing Economy, and Digital Platforms: Examining user behavior, market dynamics, and performance drivers in emerging digital ecosystems (e.g., crowdfunding campaigns, app markets).
    Digital Innovation and Entrepreneurship: Studying the role of technological innovation in firm growth, particularly in internet-based industries.
  3. Technological Innovation & Industrial Policy
    Innovation-Driven Industrial Competitiveness: Developing quantitative models (e.g., DEA, CGE) to assess the efficiency and competitiveness of emerging industries under technological disruption.
    Policy Evaluation and Simulation: Using computational modeling to analyze the economic and industrial impacts of trade policies, environmental regulations, and technological standards.
  4. Resource Economics & Sustainable Development
    Water Resource Management and Policy: Evaluating the economic and environmental trade-offs of water conservation policies through general equilibrium modeling.
    Global Trade and Food Security: Assessing the impacts of international trade regulations (e.g., food safety standards) on domestic industries and global supply chains.
  5. Cross-Disciplinary Methodological Innovation
    Integrating econometrics, data science, and behavioral economics to enhance the rigor and relevance of industrial and policy research.
    Leveraging big data analytics, machine learning, and agent-based modeling to uncover complex relationships in digital markets and technological ecosystems.

Andreas Angourakis Member since: Wed, Feb 03, 2016 at 04:01 PM

PhD in Archaeology (University of Barcelona), Master Degree in Prehistorical Archaeology (Autonomous University of Barcelona), Degree in Sociology (Autonomous University of Barcelona), Degree in Humanities (Autonomous University of Barcelona)

I am a computational archaeologist with a strong background in humanities and social sciences, specialising in simulating socioecological systems from the past.

My main concern has been to tackle meaningful theoretical questions about human behaviour and social institutions and their role in the biosphere, as documented by history and archaeology. My research focuses specifically on how social behaviour reflects long-term historical processes, especially those concerning food systems in past small-scale societies. Among the aspects investigated are competition for land use between sedentary farmers and mobile herders (Angourakis et al. 2014; 2017), cooperation for food storage (Angourakis et al. 2015), origins of agriculture and domestication of plants (Angourakis et al. 2022), the sustainability of subsistence strategies and resilience to climate change (Angourakis et al. 2020, 2022). He has also been actively involved in advancing data science applications in archaeology, such as multivariate statistics on archaeometric data (Angourakis et al. 2018) and the use of computer vision and machine learning to photographs of human remains (Graham et al. 2020).

As a side, but not less important interest, I had the opportunity to learn about video game development and engage with professionals in Creative Industries. In one collaborative initiative, I was able to combine my know-how in both video games and simulation models (\href{https://doi.org/10.1007/978-3-030-92843-8_15}{Szczepanska et al. 2022}).

  • Modeling human-plant interactions in the origin of agriculture: Multiparadigmatic modeling and simulation (ABM, System Dynamics) of the interaction between humans and plants during domestication.
  • Modeling cooperation in small-scale food economies: Agent-based modeling and simulation of the mechanisms involved in the emergence and disruption of cooperative behavior and institutions.
  • Models of resource metabolism: study of matter, information and energy flows in systems with living agents at all scales.
  • Modeling prehistoric hunting: modeling hunting at the scale of individuals to understand the immediate constraints of hunting as an ecological, economical and social activity.
  • Modeling the interaction between herding and farming in arid environments: Agent-based modeling and simulation of the mechanisms involved in the formation and change of agro-pastoral land use patterns (sedentary farming and mobile herding) in the arid Afro-Eurasia.
  • Models for games, games for models: Explore the intersection between modeling in Archaeology and game design, aiming to improve our understanding of the long-term implications of human behavior.

Displaying 6 of 176 results for "Jonathan Marino" clear search

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.
Accept