Displaying 10 of 65 results learning clear search
Sr Machine Learning Engineer, Google Developer Expert in Cloud and Machine Learning. CompTIA Security+, AWS certified Machine Learning specialty.
Generative AI, LLMs, Multi-Agent Modeling, Agent-Based Modeling, Cellular Automata, Graph Networks, Deep Learning, Social Sciences
S.R. Aurora, also known as Mai P. Trinh, is an Assistant Professor of Management at The University of Texas Rio Grande Valley. Her interdisciplinary work intersects leadership, complex systems science, education, technology, and inclusion. Her research harnesses technology to cultivate future leaders and helps people thrive in our volatile, uncertain, complex, and ambiguous (VUCA) high-tech world, aligning with four United Nations’ sustainable development goals: Quality education (#4), Gender equality (#5), Decent work and economic growth (#8), and Reduced inequalities (#10). She has published in top-tiered peer-reviewed journals such as The Leadership Quarterly and The Academy of Management Learning and Education and received multiple national and international awards for her research, teaching, and mentoring. Dr. Aurora earned her doctoral degree in Organizational Behavior from the Weatherhead School of Management at Case Western Reserve University in 2016.
Leader development, leading complex systems, agent-based modeling, experiential learning, innovations in online education
Cheick Amed Diloma Gabriel Traore is a researcher specializing in modeling multi-agent systems. He earned his PhD from Cheikh Anta Diop University (UCAD) in Senegal. His doctoral research focused on the formalization and simulation of Sahelian transhumance as a complex adaptive system. Utilizing mathematical and computational techniques, he developed agent-based models to analyze the spatiotemporal dynamics of transhumant herds, taking into account factors such as herd behavior, environmental conditions, and socio-economic pressures.
To design the models for his dissertation, Cheick conducted extensive fieldwork in Senegal. He collaborated with interdisciplinary teams to collect data on transhumant practices within the Sahelian ecosystem. With this data, he created a multi-objective optimization framework to model the movement decisions of transhumants and their herds. Additionally, he developed a real-time monitoring system for transhumant herds based on discrete mathematics. His doctoral research was funded by the CaSSECS project (Carbon Sequestration and Sustainable Ecosystem Services in the Sahel).
Before pursuing his PhD,Cheick obtained both a master’s and a bachelor’s degree in mathematics from Nazi Boni University in Burkina Faso. During his studies, he developed a rectangular grid for image processing and applied the Hough transform to detect discrete lines. His master’s and bachelor’s degrees were funded by the Burkinabe government.
Currently,Cheick is an Assistant Professor at the Institute of Computer Engineering and Telecommunications at the Polytechnic School of Ouagadougou. In addition to his role in student training, he is working on integrating viability theory with agent-based modeling to address sustainable development challenges in rapidly changing and complex socio-economic systems. His research has been published in several renowned conferences and scientific journals, and he continues to actively contribute to the fields of complex systems modeling and image processing.
Agent Based Modeling, Machine Learnig, Deep Learning, Numerical Analysis
Moscow City University, Professor: Institute of Digital Education - http://digida.mgpu.ru
National Research University Higher School of Economics, Professor: Institute of Education / Department of Educational Programmes. Leading Expert: Institute of Education / Laboratory for Digital Transformation of Education - 2019 – present
2016 – present Leading Researcher at Moscow City University, Educational policies & educational practices
2018 – 2020 World Bank, Consultant. Children Learning to Code: Essential for 21st Century Human Capital
2011 - 2019 - Co-founder, chief community officer at WikiVote!
Educational network - Letopisi.org 2006 – present, Co-founder, chief community officer
Scientific project “Mobile and ubi-learning”, 2009 - 2011
ABM, wiki, NetLogo, StarLogo Nova, R, Collaboration
He is an experienced Lecturer with a demonstrated history of working in the education management industry. He was skilled in Agent-based Modeling and Simulation, Competency Assessing and Fundamental Supply Chain Management. Strong research background and analyst with a Master’s degree focused in Logistics and Supply Chain Management from Institut Teknologi Sepuluh Nopember Surabaya and Certified Supply Chain Analyst from ISCEA International.
My research focused on pricing strategy and its impact on Supply Chain (SC) using the Agent-Based Modeling and Simulation (ABMS) approach. Currently, I’m working on an ABMS model to analyze the impact of SC Coordination on SC performance when intelligent retailers may offer price discounts based on the market’s states using Q-learning algorithm.
Eletronic Engineer with specialization in Computer Science and a passion for Artificial Intelligence, Simulation, Programming, and many other tech topcis . One life is really not enough to learn and experiment all cool things that are out there. Love also learning languages: Portuguese, English, French, Italian, and German.
Simulation, machine learning, systems modeling, big data.
Dr. Saeed Moradi received his Ph.D. in Civil Engineering from Texas Tech University in Lubbock, Texas. Saeed has 11+ years of experience in research, policymaking, housing sector, construction management, and structural engineering. His career developed his enthusiasm for the enhancement of post-disaster recovery plans. Through his research on disaster recovery, community resilience, and human-centered complex systems, Saeed aims to bridge the gap between social sciences and civil/infrastructure engineering.
Community and Infrastructure Resilience
Disaster Recovery
Complex Systems Modeling
Agent-Based Modeling
System Dynamics
Machine Learning
Pattern Recognition
Data Mining
Spatial Analysis and Modeling
Construction Management
Building Information Modeling
Peter Gerbrands is a Researcher at the of Utrecht University School of Economics, where is develops the data infrastructure FIRMBACKBONE. He teaches data science courses and econometrics as well as supervising bachelor, master, and Ph.D. theses. His research interests are agent-based simulations, social network analysis, complex systems, big data analysis, statistical learning, and computational social science. He applies his skills primarily for policy analysis, especially related to illicit financial flows, i.e. tax evasion, tax avoidance and money laundering and has published in Regulation & Governance, and EPJ Data Science. Prior to becoming an academic, Peter had a long career in IT consulting. In the Fall of 2023, he was a Visiting Research Scholar at SUNY Binghamton in NY.
agent-based simulations
social network analysis
complex systems
big data analysis
statistical learning
computational social science
Hello,
My name is Roberto and I am a graduate student at The Pennsylvania State University. I am in the “Information Sciences - Cybersecurity and Information Assurance program”, through which I discovered my interest in ABM. I am conducting my capstone research project on how to make ABM more effective in the disaster recovery planning process of IT companies. I am currently looking for interview candidates to conduct my research. If you or anyone you know have experience using ABM for disaster recovery planning in IT or tech, please reach out!
I learned about ABM through the Intelligent Agents course at Penn State, where we modeled everything from terrorist attacks to social relationships. I was immediately interested in ABM due to the potential and capabilities that it provides in so many areas. I hope to make ABM more popular in IT disaster recovery planning through my research, while learning more about ABM myself.
Cyber security
Agent-Based Modeling
Information Technology
Disaster Recovery
Displaying 10 of 65 results learning clear search