Displaying 10 of 494 results for "Bin-Tzong Chi" clear search
I’m a university professor who works on projects relating to humanely managing wildlife and street dog populations both in Ohio and internationally with a special focus on disease. I also enjoy using novel hardware and software to solve problems in biology.
Managing street dogs is my greatest passion, but I also work on lots of wildlife management projects.
I am an anthropological archaeologist with broad interests in hunter-gatherers, lithic technology, human evolution, and complex systems theory. I am particularly interested in understanding processes of long term social, evolutionary, and adaptational change among hunter-gatherers, specifically by using approaches that combine archaeological data, ethnographic data, and computational modeling.
Applications of agent-based modeling and complexity theory to real-world problems. I am particular interested in stigmergic polyagents, their relation to the path integral formalization of quantum physics, and their application to combinatorially explosive problems, but also work extensively in modeling social systems.
I am interested in application of abm to dynamic network modeling for applications to social psychology
Dr. Morteza Mahmoudzadeh is an assitant professor at the University of Azad at Tabriz in the Department of Managent and the director of the Policy Modeling Research Lab. Dr. Mahmoudzadeh did a degree in Software Engineering and a PhD in System Sciences. Dr. Mahmoudzadeh currently works on different regional and national wide projects about modeling sustaiblity and resilience of industrial ecosystems, innovation networks and socio-environmental systems. He also works on hybrid models of opinion dynamics and agent based models specifically in the field of modeling customers behavior and developing managerial tools for strategic marketing policy testing. His team at Policy Modeling Research Lab. currently work on developing a web based tool with python for systems modeling using system dynamics, Messa framework for agent-based modeling and Social Networks Analysis.
Modeling Complex systems, Simulation: System Dynamics, Agent Based and Discrete Event
System and Complexity Theory
Muaz is a Senior Member of the IEEE and has more than 15 years of professional, teaching and research experience. Muaz has been working on Communication Systems and Networks since 1995. His BS project in 1995 was on the development of a Cordless Local Area Network. In 1996, his postgraduate project was on Wireless Connectivity of devices to Computers. In addition to his expertise as an Communications engineer, his areas of research interest are in the development of agent-based and complex network-based models of Complex Adaptive Systems. He has worked on diverse case studies ranging from Complex Communication Networks, Biological Networks, Social Networks, Ecological system modeling, Research and Scientometric modeling and simulation etc. He has also worked on designing and developing embedded systems, distributed computing, multiagent and service-oriented architectures.
Ken Buetow is a human genetics and genomics researcher who leverages computational tools to understand complex traits such as cancer, liver disease, and obesity. He currently serves as director of Computational Sciences and Informatics program for Complex Adaptive Systems at Arizona State University (CAS@ASU), is a professor in the School of Life Sciences in ASU’s College of Liberal Arts and Sciences; is a core faculty in the Center for Evolution and Medicine in the Biodesign Institute at ASU; and is director of bioinformatics and data management for the National Biomarker Development Alliance.
Professor Buetow previously served as the Founding Director of the Center for Biomedical Informatics and Information Technology within the National Institutes of Health’s National Cancer Institute.
Leigh Tesfatsion received the Ph.D. degree in economics from the University of Minnesota, Mpls., in 1975, with a minor in mathematics. She is Research Professor of Economics, Professor Emerita of Economics, and Courtesy Research Professor of Electrical & Computer Engineering, all at Iowa State University. Her principal current research areas are electric power market design and the development of Agent-based Computational Economics (ACE) platforms for the performance testing of these designs. She is the recipient of the 2020 David A. Kendrick Distinguished Service Award from the Society for Computational Economics (SCE) and an IEEE Senior Member. She has served as guest editor and associate editor for a number of journals, including the IEEE Transactions on Power Systems, the IEEE Transactions on Evolutionary Computation, the Journal of Energy Markets, the Journal of Economic Dynamics and Control, the Journal of Public Economic Theory, and Computational Economics. Online Short Bio
Agent-based computational economics (ACE); development and use of ACE test beds for the study of electric power market operations; development and use of ACE test beds for the study of water, energy, and climate change
I have a strong background in building and incorporating agent-based simulations for learning. Throughout my graduate career, I have worked at the Center for Connected Learning and Computer Based Modeling (CCL), developing modeling and simulation tools for learning. In particular, we develop NetLogo, the gold standard agent-based modeling environment for learners around the world. In my dissertation work, I marry biology and computer science to teach the emergent principles of ant colonies foraging for food and expanding. The work builds on more than a decade of experience in ABM. I now work at the Center for the Science and the Schools as an Assistant Professor. We delivered a curriculum to teach about COVID-19, where I incorporated ABMs into the curriculum.
You can keep up with my work at my webpage: https://kitcmartin.com
Studying the negative externalities of networks, and the ways in which those negatives feedback and support the continuities.
In this paper, we explore the dynamic of stock prices over time by developing an agent-based market. The developed artificial market comprises of heterogeneous agents occupied with various behaviors and trading strategies. To be specific, the agents in the market may expose to overconfidence, conservatism or loss aversion biases. Additionally, they may employ fundamental, technical, adaptive (neural network) strategies or simply being arbitrary agents (zero intelligence agents). The market has property of direct interaction. The environment takes the form of network structure, namely, it takes the manifestation of scale-free network. The information will flow between the agents through the linkages that connect them. Furthermore, the tax imposed by the regulator is investigated. The model is subjected to goodness of fit to the empirical observations of the S\&P500. The fitting of the model is refined by calibrating the model parameters through heuristic approach, particularly, scatter search. Conclusively, the parameters are validated against normality, absence of correlations, volatility cluster and leverage effect using statistical tests.
Displaying 10 of 494 results for "Bin-Tzong Chi" clear search