Community

Displaying 2 of 52 results for "Eckhard Auch" clear search

Eduardo César Member since: Fri, Nov 08, 2024 at 08:14 AM Full Member Reviewer

Ph.D., Computer Science, Universitat Autònoma de Barcelona, Undergraduate, Computer Engineering, Universidad Simón Bolívar

As of my incorporation into the Department of Computer Architecture and Operating Systems of the UAB as a postgraduate student, it is possible to divide my scientific-technical career into the following stages:

Simulation of Parallel Applications (1992-99): Focused on the design and development of simulators of parallel applications. This research main objective was the definition of abstractions for parallel programs, based on characterizing tasks and their dependences. Two main abstractions were developed, at first a simpler one, which was easier to parametrize, and, next, a more complex an accurate one. Using these characterizations, several simulation tools were programmed and used in the context of national and European projects. As part of my Master’s thesis, I was involved in the design and development of some of these simulation applications.

National projects: 4, European: 2

International conferences: 3, National: 1, Journal papers: 3

Security in Distributed Systems (2007-12): Focused on the design and development of the FPVA (First Principles Vulnerability Assessment) methodology for the evaluation of vulnerabilities in Grid applications. This methodology clearly defined a set of steps for the assessment of Grid applications vulnerabilities, most of these steps could be automatized or at least supported by specific tools. Jointly with other professors of our group and from the University of Wisconsin, I was involved in the original definition and application of this methodology.

International projects: 2

Master Thesis: 1, Ph.D. Thesis: 1

International conferences: 2, National: 1, Journal papers: 2

Parallel Application Modeling (1999-present): This is my main line of research, aimed at defining high-level performance models for parallel applications. Initially, models were defined for MPI applications with a master-worker and pipeline structure, but later this line has been expanded with the definition of models for memory-intensive OpenMP applications, composed (mix of several structures) applications, applications based on mathematical libraries, distributed data-intensive applications and, finally, applications based on the simulation of agents (ABS) with SPMD structure.

As a result of the work on modeling the performance of ABS parallel systems, we have opened a new line for the definition and implementation of a benchmark for assessing the performance of the parallel simulators generated by well-known platforms, such as FLAME, Repast-HPC or D-Mason. In addition, the knowledge we have gained on this topic has opened new ways of collaboration for optimizing real parallel ABS in the health sciences area (tumor growth and infection spread).

National projects: 12, European: 1

International conferences: 17, National: 4, Journal papers: 11

International Presentations: 4

Parallel Applications Tuning Tools (2010-present): Focused on the design and development of tools for automatic tuning and, in some cases, also dynamic tuning of parallel applications. These tools allow the integration of performance models in the form of external components provided by the analyst. For this reason, this research line is tightly coupled with the Parallel Application Modeling one. The two main tools developed totally or partially by our group are Monitoring Analysis and Tuning Environment-MATE (and its highly scalable evolution ELASTIC) and Periscope Tuning Framework-PTF.

National projects: 2, European: 1

International conferences: 11, Journal papers: 2

Tools: MATE, ELASTIC, PTF

International Presentations: 5

Ping Lu Member since: Fri, Feb 24, 2017 at 04:47 AM Full Member Reviewer

Lu Ping is a dedicated researcher in interdisciplinary fields including artificial intelligence (AI), digital economy, technological innovation, and industrial economics. Currently serving as an Associate Research Fellow at the China Academy of Information and Communications Technology (CAICT), Lu Ping focuses on examining the impacts of digital technologies (e.g., AI, big data, and IoT) on economic growth, industrial ecosystems, policy formulation, and societal ethics through multidimensional data modeling and empirical research.
Representative Academic Contributions:
1. AI Development and Societal Implications
A Brief History of Artificial Intelligence Development in China (2017): Explored the technological evolution and policy-driven pathways of China’s AI industry.
Ethical Dilemmas Faced by AI Algorithms (2018): Analyzed ethical challenges such as algorithmic bias and data privacy, proposing governance frameworks.
A Brief History of the Evolution of Smart Hardware in China (2018): Systematically reviewed the technological iterations and market dynamics of China’s smart hardware sector.
2.Technological Innovation and Industrial Economics
An Empirical Analysis of Technological Innovation Driving Growth in Internet Companies: Evidence from A-Share Listed Internet Firms in Shanghai and Shenzhen (2019).
Research on Competitiveness Measurement of Frontier Emerging Industries Based on Data Envelopment Analysis (DEA) Models (2019).
3.Digital Economy and Market Behavior
Correlation Analysis of Crowdfunding Behavior and Funding Performance for Internet Products: A Bayesian Approach Based on JD.com Crowdfunding Data (2018): Uncovered nonlinear relationships between user participation and project success rates using crowdfunding platform data.
Analyzing the Effects of Developer and User Behavior on Mobile App Downloads (2019): Built predictive models for app market performance based on user behavior data.
4.Policy Simulation
General Equilibrium Analysis of Beijing’s Water Supply and Consumption Policies: A Computable General Equilibrium (CGE) Model-Based Approach (2015).
Impact Analysis of EU Food Safety Standards on China’s Food Industry: A Dynamic Global Trade Analysis Project (GTAP) Model-Based Study (2015).
Academic Contributions:
Pioneered interdisciplinary paradigms in industrial economics research by integrating perspectives from econometrics, data science, and sociology. Published high-impact research in AI ethics, digital economy policies, and resource-environmental economics, providing decision-making references for academia and policymakers.

My research focuses on the interdisciplinary nexus of artificial intelligence (AI), digital economy, technological innovation, and industrial economics, with an emphasis on understanding how digital technologies reshape economic structures, policy frameworks, and societal norms. Key areas of interest include:

  1. Artificial Intelligence & Digital Transformation
    Ethical and Governance Challenges of AI: Investigating algorithmic bias, data privacy, and accountability in AI systems; proposing frameworks for ethical AI development and deployment.
    AI Adoption and Economic Impact: Analyzing how AI-driven automation and innovation influence productivity, labor markets, and industrial competitiveness.
  2. Digital Economy & Platform Markets
    Crowdfunding, Sharing Economy, and Digital Platforms: Examining user behavior, market dynamics, and performance drivers in emerging digital ecosystems (e.g., crowdfunding campaigns, app markets).
    Digital Innovation and Entrepreneurship: Studying the role of technological innovation in firm growth, particularly in internet-based industries.
  3. Technological Innovation & Industrial Policy
    Innovation-Driven Industrial Competitiveness: Developing quantitative models (e.g., DEA, CGE) to assess the efficiency and competitiveness of emerging industries under technological disruption.
    Policy Evaluation and Simulation: Using computational modeling to analyze the economic and industrial impacts of trade policies, environmental regulations, and technological standards.
  4. Resource Economics & Sustainable Development
    Water Resource Management and Policy: Evaluating the economic and environmental trade-offs of water conservation policies through general equilibrium modeling.
    Global Trade and Food Security: Assessing the impacts of international trade regulations (e.g., food safety standards) on domestic industries and global supply chains.
  5. Cross-Disciplinary Methodological Innovation
    Integrating econometrics, data science, and behavioral economics to enhance the rigor and relevance of industrial and policy research.
    Leveraging big data analytics, machine learning, and agent-based modeling to uncover complex relationships in digital markets and technological ecosystems.

Displaying 2 of 52 results for "Eckhard Auch" clear search

This website uses cookies and Google Analytics to help us track user engagement and improve our site. If you'd like to know more information about what data we collect and why, please see our data privacy policy. If you continue to use this site, you consent to our use of cookies.
Accept