Displaying 10 of 101 results for "Mark Orr" clear search
In my research I focus on understanding human behaviour in group(s) as a part of a complex (social) system. My research can be characterised by the overall question: ‘How does group or collective behaviour arise or change given its social and physical context?‘ More specifically, I have engaged with: ‘How is (individual) human behaviour affected by being in a crowd?’, ‘Why do some groups (cooperatively) use their resources sustainably, whereas others do not?‘, ‘What is the role of (often implicit simplistic) assumptions regarding human behaviour for science and/or management?’
To address these questions, I use computational simulations to integrate and reflect synthesised knowledge from literature, empirics and experts. Models, simulation and data analysis are my tools for gaining a deeper understanding of the mechanisms underlying such systems. More specifically, I work with agent-based modelling (ABM), simulation experiments and data analysis of large datasets. Apart from crowd modelling and social-ecological modelling, I also develop methodological tools to analyse social simulation data and combining ABM with other methods, such as behavioural experiments.
Research Assistant Professor at the Virginia Modeling, Analysis and Simulation Center at Old Dominion University. I work in the Storymodelers research group at VMASC where we use computational modeling approaches to try to understand complex social issues. Our main project is currently focused on modeling the dynamics of how host communities respond to the rapid influx of forced migrants.
I study human dimensions of natural resource management and resource use by under-represented populations—often in developing nations—to enhance our understanding of conflicts involving land use, natural resources, and conservation from an interdisciplinary, systematic lens. My research spans subjects such as common pool resource management and policy, decentralization, and land use/land cover change drivers and trends relating to population rise and environmental change.
Olá, I’m Daniel! 👋
I’m an R(esearcher) at the University of São Paulo (USP) working on complex systems and data science. My family name is actually KACHvartanian, but I go by Vartanian to save everyone from a linguistic workout.
I love building open-source tools, being part of active communities, and working with the R, Python, and NetLogo programming languages. When I’m not coding, I’m likely watching a good movie, seeing friends, wandering through new places, or tinkering with some obscure new thing that may or may not go anywhere.
I am Colombian with passion for social impact. I believe that change starts at the individual, community, local and then global level. I have set my goal in making a better experience to whatever challenges I encounter and monetary systems and governance models is what concerns me at the time.
In my path to understanding and reflecting about these issues I have found my way through “Reflexive Modeling”. Models are just limited abstractions of reality and is part of our job as researchers to dig in the stories behind our models and learn to engage in a dialogue between both worlds.
Technology empowers us to act locally, autonomously and in decentralized ways and my research objective is to, in a global context, find ways to govern, communicate and scale the impact of alternative monetary models. This with a special focus on achieving a more inclusive and community owned financial system.
As a Ph.D. fellow for the Agenda 2030 Graduate School, I expect to identify challenges and conflicting elements in the sustainability agenda, contribute with new perspectives, and create solutions for the challenges ahead
Biographical Sketch
(a) Professional Preparation
Brigham Young University Statistics & Computer Science B.S. 1986
University of North Carolina Chapel Hill Biostatistics M.S. 1988
North Carolina State University Biomathematics & Entomology Ph.D. 1997
(b) Appointments
Associate Professor 2006-current: Brigham Young University Department of Biology
Assistant Professor 2000-2006: Brigham Young University Department of Integrative Biology
Research Scientist 1997-1999: Agriculture Research Service-USDA Pacific Basin Agricultural Research Center.
(c) Publications
i. Five most relevant publications
Ahmadou H. Dicko, Renaud Lancelot, Momar Talla Seck, Laure Guerrini, Baba Sall, Mbargou Low, Marc J.B. Vreysen, Thierry Lefrançois, Fonta Williams, Steven L. Peck, and Jérémy Bouyer. 2014. Using species distribution models to optimize vector control: the tsetse eradication campaign in Senegal. Proceedings of the National Academy of Science. 11 (28) : 10149-10154
Peck, S. L. 2014. Perspectives on why digital ecologies matter: Combining population genetics and ecologically informed agent-based models with GIS for managing dipteran livestock pests. Acta Tropica. 138S (2014) S22–S25
Peck, S. L. and Jérémy Bouyer. 2012. Mathematical modeling, spatial complexity, and critical decisions in tsetse control. Journal of Economic Entomology 105(5): 1477—1486.
Peck, S. L. 2012. Networks of habitat patches in tsetse fly control: implications of metapopulation structure on assessing local extinction probabilities. Ecological Modelling 246: 99–102.
Peck, S. L. 2012. Agent-based models as fictive instantiations of ecological processes.” Philosophy & Theory in Biology. Vol. 4.e303 (2012): 12
ii. Five other publications of note
Peck, S. L. 2008. The Hermeneutics of Ecological Simulation. Biology and Philosophy 23:383-402.
K.M. Froerer, S.L. Peck, G.T. McQuate, R.I. Vargas, E.B. Jang, and D.O. McInnis. 2010. Long distance movement of Bactrocera dorsalis (Diptera: Tephritidae) in Puna, Hawaii: How far can they go? American Entomologist 56(2): 88-94
Peck, S. L. 2004. Simulation as experiment: a philosophical reassessment for biological modeling. Trends in Ecology and Evolution 19 (10): 530 534
Storer N.P., S. L. Peck, F. Gould, J. W. Van Duyn and G. G. Kennedy. 2003 Sensitivity analysis of a spatially-explicit stochastic simulation model of the evolution of resistance in Helicoverpa zea (Lepidoptera: Noctuidae) to Bt transgenic corn and cotton. Economic Entomology. 96(1): 173-187
Peck, S. L., F. Gould, and S. Ellner. 1999. The spread of resistance in spatially extended systems of transgenic cotton: Implications for the management of Heliothis virescens (Lepidoptera: Noctuidae). Economic Entomology 92:1-16.
As of my incorporation into the Department of Computer Architecture and Operating Systems of the UAB as a postgraduate student, it is possible to divide my scientific-technical career into the following stages:
Simulation of Parallel Applications (1992-99): Focused on the design and development of simulators of parallel applications. This research main objective was the definition of abstractions for parallel programs, based on characterizing tasks and their dependences. Two main abstractions were developed, at first a simpler one, which was easier to parametrize, and, next, a more complex an accurate one. Using these characterizations, several simulation tools were programmed and used in the context of national and European projects. As part of my Master’s thesis, I was involved in the design and development of some of these simulation applications.
National projects: 4, European: 2
International conferences: 3, National: 1, Journal papers: 3
Security in Distributed Systems (2007-12): Focused on the design and development of the FPVA (First Principles Vulnerability Assessment) methodology for the evaluation of vulnerabilities in Grid applications. This methodology clearly defined a set of steps for the assessment of Grid applications vulnerabilities, most of these steps could be automatized or at least supported by specific tools. Jointly with other professors of our group and from the University of Wisconsin, I was involved in the original definition and application of this methodology.
International projects: 2
Master Thesis: 1, Ph.D. Thesis: 1
International conferences: 2, National: 1, Journal papers: 2
Parallel Application Modeling (1999-present): This is my main line of research, aimed at defining high-level performance models for parallel applications. Initially, models were defined for MPI applications with a master-worker and pipeline structure, but later this line has been expanded with the definition of models for memory-intensive OpenMP applications, composed (mix of several structures) applications, applications based on mathematical libraries, distributed data-intensive applications and, finally, applications based on the simulation of agents (ABS) with SPMD structure.
As a result of the work on modeling the performance of ABS parallel systems, we have opened a new line for the definition and implementation of a benchmark for assessing the performance of the parallel simulators generated by well-known platforms, such as FLAME, Repast-HPC or D-Mason. In addition, the knowledge we have gained on this topic has opened new ways of collaboration for optimizing real parallel ABS in the health sciences area (tumor growth and infection spread).
National projects: 12, European: 1
International conferences: 17, National: 4, Journal papers: 11
International Presentations: 4
Parallel Applications Tuning Tools (2010-present): Focused on the design and development of tools for automatic tuning and, in some cases, also dynamic tuning of parallel applications. These tools allow the integration of performance models in the form of external components provided by the analyst. For this reason, this research line is tightly coupled with the Parallel Application Modeling one. The two main tools developed totally or partially by our group are Monitoring Analysis and Tuning Environment-MATE (and its highly scalable evolution ELASTIC) and Periscope Tuning Framework-PTF.
National projects: 2, European: 1
International conferences: 11, Journal papers: 2
Tools: MATE, ELASTIC, PTF
International Presentations: 5
Mario Ureta holds a BSc in Economics from Birkbeck, University of London, a Graduate Diploma in Data Science from the London School of Economics, and an MSc in Data Science and Analytics from Brunel University London. He is currently a PhD student in Computing Science at Birkbeck, University of London. His research focuses on the economic study of individual preferences and decision-making, and on the use of agent-based models as a bridge between economic theory and computational experimentation. Through economic simulation, his work examines how heterogeneous preferences, social interaction, and firm behaviour jointly shape aggregate market outcomes, including non-linear dynamics and tipping points.
My research interests centre on the study of individual preferences in economics and on understanding how preferences evolve through interaction, learning, and social context. I am particularly interested in how seemingly weak or latent preferences—such as attitudes toward environmental attributes, prices, or social norms—can become amplified through feedback mechanisms and generate non-linear aggregate outcomes. A core methodological focus of my work is the use of agent-based modelling and economic simulation as a bridge between economic theory and experimentation. By treating agent-based models as computational laboratories, I explore how heterogeneous preferences, habit formation, peer influence, and firm behaviour interact dynamically, allowing theoretical mechanisms to be tested, stress-tested, and compared under controlled but flexible conditions that are difficult to achieve using purely analytical or empirical approaches.
Hello,
My name is Roberto and I am a graduate student at The Pennsylvania State University. I am in the “Information Sciences - Cybersecurity and Information Assurance program”, through which I discovered my interest in ABM. I am conducting my capstone research project on how to make ABM more effective in the disaster recovery planning process of IT companies. I am currently looking for interview candidates to conduct my research. If you or anyone you know have experience using ABM for disaster recovery planning in IT or tech, please reach out!
I learned about ABM through the Intelligent Agents course at Penn State, where we modeled everything from terrorist attacks to social relationships. I was immediately interested in ABM due to the potential and capabilities that it provides in so many areas. I hope to make ABM more popular in IT disaster recovery planning through my research, while learning more about ABM myself.
Cyber security
Agent-Based Modeling
Information Technology
Disaster Recovery
Displaying 10 of 101 results for "Mark Orr" clear search