Displaying 10 of 256 results for "Dave van Wees" clear search
My profound interest in networks convinced me to work in these subjects and start my master project on an application of social network analysis for detecting organized fraud in Automobile insurance, which helps to flag groups of fraudsters. The key point of this project is simply to find fraudulent rings, while the most of traditional methods have only taken opportunistic fraud into consideration. My duty in research is to design an algorithm for identifying cyclic components, then to be compared with theoretical ones. This project showed me how networks are used in the analysis of relations.
My primary research interests lie at the intersection of two fields: evolutionary computation and multi-agent systems. I am specifically interested in how evolutionary search algorithms can be used to help people understand and analyze agent-based models of complex systems (e.g., flocking birds, traffic jams, or how information diffuses across social networks). My secondary research interests broadly span the areas of artificial life, multi-agent robotics, cognitive/learning science, design of multi-agent modeling environments. I enjoy interdisciplinary research, and in pursuit of the aforementioned topics, I have been involved in application areas from archeology to zoology, from linguistics to marketing, and from urban growth patterns to materials science. I am also very interested in creative approaches to computer science and complex systems education, and have published work on the use of multi-agent simulation as a vehicle for introducing students to computer science.
It is my philosophy that theoretical research should be inspired by real-world problems, and conversely, that theoretical results should inform and enhance practice in the field. Accordingly, I view tool building as a vital practice that is complementary to theoretical and methodological research. Throughout my own work I have contributed to the research community by developing several practical software tools, including BehaviorSearch (http://www.behaviorsearch.org/)
Interested in numerical models and new conceptual ideas, applications from industry to medicine.
I focus on numerical modeling of mechanics of solid materials and cell mechanics. The models that I developed so far address granular matters, bio-fluids, cellular tissues, and individual cells.
I further develop Agent-based Models, which are methods to predict collective behavior from individual dynamics controlled by rules or differential equations. Examples: tumor growth, swarms, crowd movement.
The methods I used are Particle-based methods which offer great flexibility within physical modeling, and can operate in a large range of scales, from atomistic scales (e.g. Molecular Dynamics) to continuum approaches (e.g. Smoothed Particle Hydrodynamics).
The University of Southern California’s accelerated, online GIS graduate programs are unique in higher education. Designed and taught by world-renowned faculty, a USC GIS education offers a multidisciplinary framework for understanding and applying spatial information to modern business, government, military and organizational challenges. We offer two master’s programs, which can be completed in 20 months and four online GIS certificates that can be completed in as little as eight months.
Both master’s programs as well as the masters in GIS certificates and geospatial intelligence offer options for individuals of all backgrounds, from career changers to industry veterans. The geospatial leadership graduate certificate is specifically designed for experienced GIS professionals who are interested in managerial positions. If you have questions about any of our graduate GIS programs, contact an enrollment advisor.
The big picture question driving my research is how do complex systems of interactions among individuals / agents result in emergent properties and how do those emergent properties feedback to affect individual / agent decisions. I have explored this big picture question in a number of different contexts including the evolution of cooperation, suburban sprawl, traffic patterns, financial systems, land-use and land-change in urban systems, and most recently social media. For all of these explorations, I employ the tools of complex systems, most importantly agent-based modeling.
My current research focus is on understanding the dynamics of social media, examining how concepts like information, authority, influence and trust diffuse in these new media formats. This allows us to ask questions such as who do users trust to provide them with the information that they want? Which entities have the greatest influence on social media users? How do fads and fashions arise in social media? What happens when time is critical to the diffusion process such as an in a natural disaster? I have employed agent-based modeling, machine learning, geographic information systems, and network analysis to understand and start to answer these questions.
I have been studying (1) applied discrete choice modelling, (2) consumer choices of seafood, (3) international seafood trade, (4) marine habitat and fishery management, (5) China’s international relation, (6) environment and health, and (7) experimental auctions.
I’m starting to learn ABM and hope to apply the method into my research.
My research uses modeling to understand complex coupled human and natural systems, and can be generally described as computational social science. I am especially interested in modeling water management systems, in both archaeological and contemporary contexts. I have previously developed a framework for modeling general archaeological complex systems, and applied this to the specific case of the Hohokam in southern Arizona. I am currently engaged in research in data mining to understand contemporary water management strategies in the U.S. southwest and in several locations in Alaska. I am also a developer for the Repast HPC toolkit, an agent-based modeling toolkit specifically for high-performance computing platforms, and maintain an interest in the philosophy of science underlying our use of models as a means to approach complex systems. I am currently serving as Communications Officer for the Computational Social Science Society of the Americas.
Displaying 10 of 256 results for "Dave van Wees" clear search